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Phonon heat conduction in a semiconductor nanowire
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A model for phonon heat conduction in a semiconductor nanowire with dimensions comparable to
the phonon mean free path is developed. It is based on the solution of Boltzmann’s equation, which
takes into accourf) modification of the acoustic phonon dispersion due to spatial confinement, and
(i) change in the nonequilibrium phonon distribution due to partially diffuse boundary scattering.
Numerical simulation is performed for a silicon nanowire with boundaries characterized by different
interface roughness. Phonon confinement and boundary scattering lead to a significant decrease of
the lattice thermal conductivity. The value of this decrease and its interface roughness and
temperature dependence are different from the predictions of the early models. The observed change
in thermal resistance has to be taken into account in simulation of deep-submicron and
nanometer-scale devices. 01 American Institute of Physics. [DOI: 10.1063/1.1345515

I. INTRODUCTION tally that electrical conductivity of silicon nanowires 15—-35
nm in diameter can be varied by as much as four orders of
As the transistor counts on the high-end microprocessomagnitude by doping and thermal treatm&ritlanowires
vanguard rush toward the 200 million mark and the featurewith widths down to 10 nm and small size fluctuations have
dimensions shrink toward nanometer scale, thermal propebeen fabricated by regular electron beam lithography and
ties of semiconductor nanostructures are beginning to attragiet etching’
significant attentiort=3 Several major factors explain recent To date, there have been three distinctively different ap-
interest to investigation of thermal conductivity in quantum proaches proposed for calculating the lattice thermal conduc-
confined structures. The most important one is a continuougvity in nanowires (quantum wires The first approach is
scaling down of the feature sizes in electronic devices an@ased on the effectively bulk formulae for the lattice thermal
circuits, which leads to an increase in power dissipation petonductivity but includes modification of acoustic phonon
unit area despite the reduction of the power supply volfage dispersion and group velocity in a nanowire due to phonon
In addition, a variety of size effects that manifest themselvegonfinement effect®!! The latter allowed the authors to
at nanoscale are extremely interesting from the physics poinhtroduce size effects beyond regular phonon-boundary scat-
of view. tering. However, this approach does not consider the modi-
In this article we investigate phonon heat conduction in &ication of nonequilibrium phonon distribution due to bound-
generic semiconductor nanowire with lateral dimensionsary scattering. We call this approach Al in the rest of the
comparable to the acoustic phonon mean free PBFP).  article. The second approach, on the contrary, corrects the
The latter is 41 nm in the Debye model at room temperatureformula for thermal conductivity by solving the linearized
and 260 nm in the kinetic theory with dispersibWe refer  Boltzmann equation with given boundary conditions but uses
to our structure as a nanowire rather than a quantum wire tgylk acoustic phonon dispersion and phonon MERhe
emphasize that the size effects, which modify phonon transatter neglects effects of acoustic phonon confinement, which
port, may occur in structures with a larger feature ¢taen-  pecome significant as the structure size approaches the pho-
dreds of nanometershan that required for carrier quantum non MFP. This approach is referred to as A2. The third ap-
confinement effects to take place. At the same time, OUproach deals with a specific case of very narrow quantum
model is applicable to a very narrow quantum wire, whereyjires and solves the problem using the molecular dynamics
carrier transport is confined, as long as lateral dimensions Ghethod!®. This method allows accurate calculation of pho-
the wire are much larger than the lattice constant of the manon dispersion and thermal conductivity of structures with a
terial (a=0.543 nm for silicon at room temperatirdhese  few atomic layers but it does not allow us to include a vari-
quasione-dimensionallD) structures have recently been ety of quantum effects, requires knowledge of interatomic
propo;ed for applications in quantum wire tran;isfmgsan- potential, and is limited by the computation time.
tum wire lasers,and thermoelectric quantum wire arrgys. In this article we propose a model that combines the first
can also be viewed as an ultimate narrow channel of a scalgg|,o approachegdenoted by A¥A2) and presents a more
down conventional metal—oxide—semiconductor field-effectonsjstent way of calculating the lattice thermal conductivity
transistor. The devel_opment of sophlstlcatec_i patterning _anﬁl] quasi-1D nanostructures. The presented model does not
self-assembly techniques now allows fabrication of highyse the assumption of the constant phonon relaxation time
quality nanowires. Recently, it has been shown experimeny ¢ caiculates it from the first principles. We generalize our
model to include phonon relaxation on free electrons, which
dElectronic mail: jzou@ee.ucr.edu is important for scaled down device channels. The effects of
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interface quality characterized by the ratio between speculavhereV,, V,, andV, are the three components of phonon
and diffuse phonon-boundary scattering is also analyzedyroup velocity along the, y, andz axis, respectively.

The rest of the article is organized as follows. In the next  In our theoretical analysis, we consider a generic cylin-
section, we present the theory. Results of numerical simuladrical quantum wire of diametdd with an axis along the
tions and discussion are given in Sec. lll. Our conclusionglirection, and assume a temperature gradient along this axis.

are presented in Sec. IV. Eq. (7) then becomes
v Ngs ,\ Ngs | Nos T N, ®
Il. THEORY Xox Yoy  1elQ) Faz 9T
A. Phonon Boltzmann equation Assuming that the phonon distribution does not deviate

A phonon of energyiwy(q) and velocityV(q) in the strongly from its equilibrium value due to the temperature
. 0 .
direction ofq contributesti w (q)V4(q) to the heat current. dradient, we can replace/lly s/dT) by (INg¢/JT) in the
The net phonon heat current with a small temperature gradfght-hand side of the E48). This is a standard step used for

entVT is given by solving such an equation. Correspondingly, the linearized
phonon Boltzmann equation takes the form
JQ=—qE§ Ng.shos(q)Vy(a), (1) MNys . Ngs  Ngs . aT INQq °

_ , o ox Y gy relQ) Zaz aT
where subscrips refers to a particular phonon polarization

type, q is the phonon wavevectat, is the Planck constangy I the subsection B, we introduce the expression for the lat-
is the phonon frequencyl,s(q) is the phonon group Ve|0city, tice thermal CoanCtiVity in a nanOWire-in the Splrlt Of the
andN, =Ng —Ng s is the deviation of the phonon distribu- approach A2. It is based on the solution of EE) with

tion, Ng s, from its equilibrium vaIueNg’S. The equilibrium appropriate boundary conditions.

phonon distributionNgjs, is given by the Bose—Einstein dis-

tribution B. Calculation of the lattice thermal conductivity
NO — 1 5 For simplicity, we omit the subscriptsandsin the rest
45" expfhwy(q)/kgT)—1" @ of the article. In the bulk, the solution for E¢9) can be
_— written as
By definition
~  oN°
Jo=—x VT, 3) N=—=VT.Vrc. (10
Thus, the problem of determining the lattice thermal conduc- _ i
L . L , In the coordinate system that we have defined, we can further
tivity is essentially that of obtaininijl, 5. In order to do this .
T write N as
we need to solve the Boltzmann equation igys. In steady
state, the phonon Boltzmann equation can be written as -~ oNOgT
N=— —V,7c. (11)
5Nq,s &qus 0 4 JoT oz
at ) i ot scatt_ ' @) Substituting Egs(2) and (1) in Eqg. (1) and comparing the

result with Eq.(3), we obtain the regular bulk formula for the
In Eq. (4), (dNg,s/dt)gine represents the change of the pho- |5ttice thermal conductivity

non distribution in the presence of a temperature gradient, 5
and it is given by _(Ke|® kg _5[f/T 7cX
k| > 2 2VT
INg s 77

h
ot

0 (ex_—l)zdx (12)

=—V(q)- VNgs=—(Vg(Qq) VT>(9N“'S (5)
drift ° e ° JT -

This equation is Klemens—Callaway's expression for the lat-
) tice thermal conductivity in bulk, wheilg; is the Boltzmann
The value ofN, s may also change due to scattering by Otherconstant,ﬁ is the Planck constany/ is the phonon group

phonons, impuriti.es, charge carriers, interface;, boundari_e§e|ocity’-|-iS temperatured, is the Debye temperatureg is
etc. The change i s due to these processes is denoted inthe combined phonon relaxation time, anel%iw/kgT. This
EQ. (4) by (INgs/9t)scar I the relaxation-time approxima-  equation has been used in the approach A1 with an appro-

tion this term can be written as priate modification of the phonon group velocity, and
0 . o :
MNgs|  NS—Ngs combined r.elalxatlon timerc, in a quantum welf and a
S (6)  quantum wire
at scatt 7cs(Q)

We now introduce the parametpy which characterizes
wherec4(q) is the combined phonon relaxation time. Sub-the interface roughness and its effect on the phonon-
stituting Egs.(5) and (6) in (4), we can rewrite the phonon boundary scatteringThe value ofp represents the probabil-
Boltzmann equation as ity that the phonon is undergoing a specular scattering event
at the interface. The value of-1p represents the probability
that the phonon is undergoing a diffuse scattering event. One
can also viewp as the fraction of all phonons specularly

MNgs  MNgs  INgs  Ngg

—Vx IX Yooy Z 9z Tes(d)

=0, (@)

Downloaded 23 Feb 2001 to 138.23.167.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html



2934 J. Appl. Phys., Vol. 89, No. 5, 1 March 2001 J. Zou and A. Balandin

scattered from the boundary. In the case of purely specularanowire, the phonon heat conduction is also changed. One
interface scatteringp=1, the boundary condition on the should point out here that in the approach A2 the difference
Boltzmann equation 14 between a nanowire and bulk completely disappearp at
~ ~ =112 The phonon group velocity enters the expression of
N(r=D/2;V;)=N(r=D/2;=V,), 13 Eq.(20) for x""(T,p) directly as well as via the expression
wherer = szTyz andVr:\/\/)z(TVf,. In the case of purely for phonon scattering rates, which will be described below.
diffuse scatteringp=0, the corresponding boundary condi- Whenp—0, only the first term in the summation of E4.8)
tion is remains. Wherd — o, the exponential term in Eq419) goes
_ to zero leavingA «|""*=0 for all O<p=<1.
N(r=D/2;—|V,|)=0. (149

In the case of purely specular scattering, which conserves )
~ . C. Phonon relaxation rates

crystal momentum\ does not change from its bulk value. In

the case of diffuse or partially diffuse scattering, which is a  In our model, we consider acoustic phonon relaxation in

resistive procesd\l deviates from its bulk value. The diffu- resistive processes, such as three-phonon Umklapp scatter-

sive boundary scattering means that phonons can scattéld, mass-difference scattering, boundary scattering, and

from the interface at any direction irrespective of the angle ofPhonon-electron scattering. The combined phonon relaxation

the incident phonon. In practice, the value of fhearameter ~ time can be obtained by the summation of the inverse relax-

is defined by the interface surface roughness. Following th@tion times for these scattering processes and in our case it is

derivation of Ref. 12, we solve Eq9) for N subject to the

boundary condition$13) and(14). The obtained lattice ther-
, can be expressed via

mal conductivity of a nanowirex|""

the bulk thermal conductivityx,, and its deviation due to
the phonon redistribution by the boundarias""®, as
(15

K"E(T,p) =y (T,p) — Ax{"(T,p).
wire

The deviation in the thermal conductivity valukx«,""", is
given as

AK}"’"E:%(@) ° ks

2 22y — 2 G(n(x),p)dx,

X__ 2
o (e*=1) 16

where 7 is the ratio between the wire diametBrand the
phonon mean free path, i.e.,

. f@o T rexte”

D
n(x)zm, with A (X)=V(X) 7c(X). a7

FunctionG is given by

o A 1
G00.p) = (1=p)7S, 101 [ (A=y) St ey
19

where
/2 .
Sn(u)zf e Usint cod gsin" 2 0dé. (19
0

Substituting Eqs(16)—(19) in Eq. (15 and using Eq(12),
we can further simplify the expression fe}""® as

wir kg|® k olT roxte
“ e(T’p):(EB) 2y 3fo 17
x{l—%G(n(x),p)]dx. (20)
v

Analyzing Egs.(16)—(20), we notice that whemp—1, G

given as
1 1 1 1 1
=—+—+—+ . (21)
Tc Tu ™ 7B Tphe

The relaxation time for Umklapp scattering at high tempera-
ture (room and above which is of interest here, was given
by Klemens a¥

i = 2,},2@ w_2’

Ty #Vo wp
wherey is the Gruneisen anharmonicity paramejgris the
shear modulusy, is the volume per atom, and, is the
Debye frequency. The shear modulus in E29) is treated as
a velocity dependent effective value calculated for a given
geometry. A more accurate expression for Umklapp scatter-
ing has been given in Ref. 10. Mass-difference scattering is
the scattering of phonons due to differences in mass. The
relaxation rate for the mass-difference scattering is calcu-
lated using the following expression:

1 Vo

o Am
wherel is the measure of the strength of the mass-difference
scattering defined as

r=2 fi(l—%

Heref; is the fractional concentration of the impurity atoms
of massM; andM =Z;f;M; is the average atomic mass. One
should notice that the phonon group velocityis a function
of the size of the low-dimensional structure and depends on
the particular type of boundarié$.

For the consistency of the model, we modify the expres-
sion for the boundary scattering relaxation via introduction
of parametep to the semiempirical formula

(22)

(23

2
(24)

—0, and the deviation from the bulk formula disappears, i.e.,

Ax"=0 for all D in the case of purely specular scattering. —=—(1—p).
However, the latter does not mean that the value of the ther- "B D

mal conductivity does not differ from its bulk value. Since One can see that whep=1, e.g., in the case of purely
the phonon dispersion and group velocity are different in aspecular scattering, boundary scattering does not contribute

(25
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to the thermal resistivity. In the case of purely diffuse scat- x10°
tering, p=0, Eq. (25 reduces to the well-known Casimir 6 ) T ' i 7
limit*> SILICON WIRE ~
s D=20 nm e
Y 2 5f
—_= >
B D (26) 4]
£ 4
At low doping levels, the relaxation time for acoustic =
phonons scattered by electrons can be expresséd as g sl
1 n 62w *\/2 %\ /2 e
e€1 am*V m*V =z
Tph_e pV kBT ZkBT 2kBT E 2r
wheren, is the concentration of conduction electroisg,is
the deformation potentiap is the mass density, amd* is 1f '
the electron effective mass. Here we assume that phonon
confinement does not strongly affect phonon-electron scat- 0
tering rates’ 0 2 4 6 8 10 12

PHONON WAVEVECTOR (1/cm) x10°

D. Phonon dispersions and phonon group velocities FIG. 1. Acoustic phonon dispersion relation for five lowest confined
. . . . . branches in a free-standing silicon cylindrical nanowire with a diameter of
We consider a generic cylindrical qguantum wire along2o nm. One can see that slope of the phonon branches, and thus the group

the z axis and assume that the main contribution to heatelocities, are lower than those in the bulk.
transfer along the wire comes from the longitudinal acoustic
phonon modes. Following the approach of Refs. 18—20, the

e N enﬁa)/kBT
dispersion relations for phonons in a free-standing quantunv(f w)= >, V(o) S l:l => Vn(ﬁw)WkB—T.
wire with diameteiD are given by n mm n m 32)
(92— g?)? (9aD/2)Jo(daD/2) 202(92+ ) Equation(32) gives an approximate solution since the energy
J1(qqD/2) spacing between different branches is nonequidistant. The
, 5 (0D12)Jo(qD/2) obtainedV(% w) is then used to calculate the lattice thermal
dg =0, (28)  conductivity «}"".
J1(q:D/2) !
whereq is the z component of the phonon wave vectdp, Ill. RESULTS OF SIMULATION AND DISCUSSION

andJ, are the ordinary Bessel functions, agglandq; are

First, we find the dispersion relations of confined acous-
two parameters related by

tic phonon modes in a free-standing cylindrical quantum

) w? ) wire with a particular diameter by numerically solving Egs.
qd,tzﬁ_q . (29) (28) and(29). Figure 1 shows the dispersion relations of the

N five lowest confined acoustic phonon branches in a silicon
Herevy= V(A +2u)/p andv,= yu/p are the velocities of the cylindrical nanowire with a diameter of 20 nm. The material

longitudinal and transverse acoustic waves in bulk semiconparameters used in the simulation arg==8.47x 10° cm/s
ductors, where. and . are the Lame constants, apds the  andy,=5.34x 10° cm/s. In Fig. 1, one can see that only the
density. Phonon dispersions can be obtained by numericalljist branch has a linear dispersion relation for very small
solving Eqs.(28) and (29). At eachq, there are many solu- yalues ofg, andw=0 wheng=0. For the second branch and
tions forqq andg, . Using indexn to indicate different so-  apove, there exists a cut-off frequency, i.@#0 wheng

lutions, we can write the phonon dispersion relations as  —(. The slope of the phonon branches, and thus the group
[25 42 velocities are lower than those in the bulk.
WnR=Uqt q2+qd,tn1 (30

We find the exact values of the group velocity for each
where w, is the phonon frequency for theth branch. By  phonon branch by numerical differentiation. The group ve-
numerical differentiation, we obtain phonon group velocity |ocity for the first branch almost coincides with the bulk
for each branch velocity for very small values of the phonon energy. It then

don, drops dramatically with increasing energy and rises up again
~dq (3)  much more slowly and finally asymptotically reaches a con-

q stant value. Moreover, there are very sharp jumps and drops

In order to calculate the phonon thermal conductivity, weof the velocity for the second and above branches as can be
need to find the functional dependence of the phonon groupxpected from the phonon dispersion shown in Fig. 1. Aver-
velocity on phonon energy. Moreover, since differentaging over all contributing phonon branches using the
branches have different group velocity-energy dependenciesjethod described in part D of Sec. Il, we find the average
we have to calculate the phonon group velocity averagegphonon group velocity as a function of the phonon energy.
over all contributing branches. The velocity average isThe population averaged group velocity is shown in Fig. 2.
weighted by the phonon population factor The overall value of the average phonon group velocity is

Vin
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x10° scattering rates for the three-phonon Umklapp, mass-
T T ’ difference, boundary, and phonon-electron scattering at 300
BULK K both in the bulk and in the wire. The following material
parameters have been used in the simulatioh=0.26m;,
where m, is the free electron mass=2330kg/m, €;
POPULATION AVERAGED =9.5eV, andl'=8.357x 10 4. The shear modulus is esti-
PHONON GROUP VELOCITY mated from the formulaw=v?p [see Eq(29)]. In the bulk,
Umklapp scattering dominates over mass-difference and
phonon-electron scattering. The same is true for the quantum
wells examined in Ref. 10. In our simulation, we considered
semiconductors with a relatively low carrier concentration of
10 cm™3. The scattering rate for phonon-electron scattering
at room temperature is small compared to that for Umklapp
1f » and mass-difference scattering. Thus, in lightly doped semi-
, , ) ) . conductors, the phonon-electron scattering does not have a
0 05 1 15 2 25 3 35 strong influence on the lattice thermal conductivity. How-
PHONON ENERGY (eV) x10° ever, for higher carrier concentrations, phonon-electron scat-
tering becomes important, reaching the level of other relax-
ation mechanisms.
FIG. 2. Population averaged group velocity as a function of phonon energy.  In @ nanowire, boundary scattering is significant for the
The overall value of the average phonon group velocity is 8% cm/s,  entire frequency range important for silicon. The latter is
which is about half of the phonon group velocity in the bulk. different from the quantum wells of comparable dimensions
where mass-difference dominates over most of the large por-
__ tion of the frequency rang®.Mass-difference scattering in
5.39x 10° cm/s, about half of the phonon group velocity in nanawires strongly increases at phonon frequency of about
the b.ulk. In silicon, the longitudinal sound veI00|t.y in the 5% 10*3rad/s due to the inverse-cubic dependence of the re-
bulk is 8.47<10°cm/s. The average group Velocity CoIN- ayation rate on the phonon group velocity, which drops at
cides with the first branch for small values of the phonon,[hiS point to about 50% of its bulk value. Using obtained

energy(up to 1 meV only. For higher values of the phonon n,0n group velocity and relaxation times, we calculate the
energy, it oscillates about a constant value, which asymptoti,iica thermal conductivity in the wire, and compare the
cally reaches 4.8 10° cm/s. One should remember that theseresult with the bulk value

values are obtained for specific geometry, size, and boundary After the group velocity is found, we calculatg for a

con(gtions,hanfd Wil.l be ldcijfferen(; in othefr sr:ructures. | temperature range of 300—800 K from Eg2), which takes
nce the functional dependence of phonon group Velocr, ., 4ccount confined phonon dispersion in the wire. This

ity on Energy In a nanowire 15 found, we calculate phonongives us the lattice thermal conductiviky in the framework
relaxation rates using Eq$22)—(27). Figure 3 shows the

of approach Al, which includes the decrease of the phonon
group velocity in low-dimensional structures but does not
account for the modification of nonequilibrium phonon dis-

N W e O N O ©

PHONON GROUP VELOCITY (cm/sec)

11

3 x10 . . . ' i _ tribution due to partially diffuse and partially specular inter-
BULK face scattering. Figure 4 shows the lattice thermal conductiv-
ob  T=300K : ity calculated using approach Al in a cylindrical nanowire

and bulk silicon. One can see that according to this model
the lattice thermal conductivity in the wire is reduced to
about 26% of its bulk value at 300 K. It is important to note
that this result is obtained for idealized boundary conditions
(free surfacg with complete phonon confinement. Most of
the practical situations fall into the category of mixed bound-
ary conditions with partial phonon wave penetration through
the boundaries. Quantitatively, the difference in the rigidity
of materials that make up the boundary for acoustic phonons
can be characterized by the acoustic impedance misngatch
=pwUw!ppUn, Wherep,(pp) is the density of the wir¢bar-
rier) material andv,,(vp,) is the sound velocity in the wire
0 1 2 3 4 5 6 7 8 (barrien material. Even similar materials may have rather
FREQUENCY (rad/sec) x10' large acoustic mismatchi. For example, the mismatch be-
] ) y ) ) tween Si and Ge calculated for longitudinal and transverse
liI(ZBO 3. Phonon_scattenng rat_es in a S|I!con nanowire of diamé&ter sound velocities is 0.75 and 0.71, respecti\?eWmus, in a
=20 nm due to different scattering mechanisms as functions of the phonon . . ) .
frequency. The results are shown for the three-phonon Umkiapp, masd€al nanowire embedded within material of different crystal-
difference, phonon-electron, and boundary scattering=a800 K. line properties the actual drop @ due to acoustic phonon

SCATTERING RATES (1/sec)
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FIG. 5. Lattice thermal conductivity as a function of temperature for a
FIG. 4. Lattice thermal conductivity calculated using approach Al in asilicon nanowire of diameted = 20 nm calculated on the basis of our model
cylindrical nanowire and bulk silicon. The results for the nanowire are cal-(A1+A2) and approach Al. The results are shown for the case of purely
culated for the case of purely diffuse boundary scatterprg @). One can  diffuse scattering §=0).
see that according to this model the lattice thermal conductivity in the wire
is reduced to about 26% of its bulk value at 300 K. It is important to note
that this value is obtained for the idealized boundary conditifree sur-

f ith lete ph fi L. : .
ace with complete phonon confinemen our model (AH-A2) predicts further reduction to 9% of the

bulk value. All the values are given for room temperature. In
%he purely specular boundary scattering case, @g.l,

A " correction vanishes and our model coincides with AL.
It is important to note that unlike model A2, in our approach
‘the bulk value is not recovered for the case of purely specu-
lar scattering. This is a significant difference, important for
heat transport simulation in deep submicron devices. The

nog g!?ftrlbuglotn ffrom s t?[;"k. forn\1Ndue tlo ﬁ;{“%ﬂg’fi‘?cu'ar origin of this difference lies in the fact that our model takes
and dittuse interface scattering. We calculale, =~ 1aKing .14 account modification of acoustic phonon dispersion in a

. X ; X i
into account confined phonon dispersion and the correspon(éj

: h locity. Th btai i ot uantum wire, which is present even if the wire has prefect
iNg phonon group veloctly. Thus, we obtain _asiree ~consis ®houndaries and phonon boundary scattering is completely
expression for the lattice thermal conductivity™®, which

; . specular. The prediction of our model for the=1 case
combines important features of both approaches Al and A2.p P L

The results of the simulation are shown in Figs. 5, 6 and 7.
Details of the derivation procedure and computer simulation
are given in Ref. 21.

confinement can be smaller owing to partial confinement o
acoustic phonons.

To develop a self-consistent model we combine ap
proaches Al and A2, and introduce a correctlog"™ to
in order to account for the deviation of nonequilibrium pho-

Figure 5 shows the lattice thermal conductivity as a 180 —
function of temperature calculated on the basis of our model ¢ | T=300K
(denoted by A*+A2) and approach Al. For this plot we \é 160 BULK
assumed purely diffuse phonon boundary scattei@asimir 2 140t PURELY SPECULAR (p=1)
limit). The flattening of the conductivity curve near room &
temperature is due to the addition of phonon-electron scat- 5 120f
tering. The electron density concentration used in the simu- £ 100} PURELY DIFFUSE (p=0) /!'
lation is 138cm ™2, which is far beyond the intrinsic carrier 2 i
concentration in silicon although it is still lower than the 3 8or _,,-/ ,."'
degenerate limit. One can see that inclusion of phonon redis-  © gt // . =~ .- -~ 4
tribution effects together with phonon confinement leads to = ______YYI_B.E_:-AL """" _,-"'
further decrease of the lattice thermal conductivity. = 40 WIRE: AT+AZ, ™" -

Figure 6 shows the lattice thermal conductivity at room W ool e S
temperature as a function of specular phonon-boundary scat- + ‘ ‘
tering fractionp. In the figure, we show the results for the 0 0 02 0.4 0.6 0.8 1
bulk, and those for the wire obtained using our self- SPECULAR SCATTERING FRACTION p

consistent approach (AdA2) and approach Al. One can , o _
FIG. 6. Lattice thermal conductivity at room temperature as a function of

see that for the purely .dlﬁuse boundar.y scattering, eg., specular phonon-boundary scattering fractprThe results are shown for
=0, the A1 model predicts that the lattice thermal conducyyik and the wire of diameter 20 nm calculated based on our approach

tivity drops in the wire to about 26% of the bulk value; while (A1+A2) and approach Al.

Downloaded 23 Feb 2001 to 138.23.167.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html



2938 J. Appl. Phys., Vol. 89, No. 5, 1 March 2001 J. Zou and A. Balandin

change in nonequilibrium phonon distribution due to bound-

o1\ ODECE AR (o4} ) ary scattering. All important phonon relaxation mechanisms
PURELY SPECULAR (=) soLiD: WIRE A1 such as three-phonon Umklapp scattering, mass-difference
DASHED: WIRE A1+A2 scattering, boundary scattering, and phonon-electron scatter-
ing are included into consideration. Phonon confinement and
boundary scattering lead to a significant decrease of the lat-
tice thermal conductivity. We show that inclusion of phonon
confinement effects leads to deviation of the thermal conduc-
tivity from its bulk value even in the case of purely specular
boundary scattering. This is an important observation that
has to be taken into account in the simulation of heat trans-
port in deep submicron and nanoscale devices.
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