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A model for phonon heat conduction in a semiconductor nanowire with dimensions comparable to
the phonon mean free path is developed. It is based on the solution of Boltzmann’s equation, which
takes into account�i� modification of the acoustic phonon dispersion due to spatial confinement, and
�ii � change in the nonequilibrium phonon distribution due to partially diffuse boundary scattering.
Numerical simulation is performed for a silicon nanowire with boundaries characterized by different
interface roughness. Phonon confinement and boundary scattering lead to a significant decrease of
the lattice thermal conductivity. The value of this decrease and its interface roughness and
temperature dependence are different from the predictions of the early models. The observed change
in thermal resistance has to be taken into account in simulation of deep-submicron and
nanometer-scale devices. ©2001 American Institute of Physics. �DOI: 10.1063/1.1345515�

I. INTRODUCTION

As the transistor counts on the high-end microprocessor
vanguard rush toward the 200 million mark and the feature
dimensions shrink toward nanometer scale, thermal proper-
ties of semiconductor nanostructures are beginning to attract
significant attention.1–3 Several major factors explain recent
interest to investigation of thermal conductivity in quantum
confined structures. The most important one is a continuous
scaling down of the feature sizes in electronic devices and
circuits, which leads to an increase in power dissipation per
unit area despite the reduction of the power supply voltage.4

In addition, a variety of size effects that manifest themselves
at nanoscale are extremely interesting from the physics point
of view.

In this article we investigate phonon heat conduction in a
generic semiconductor nanowire with lateral dimensions
comparable to the acoustic phonon mean free path�MFP�.
The latter is 41 nm in the Debye model at room temperature,
and 260 nm in the kinetic theory with dispersion.1 We refer
to our structure as a nanowire rather than a quantum wire to
emphasize that the size effects, which modify phonon trans-
port, may occur in structures with a larger feature size�hun-
dreds of nanometers� than that required for carrier quantum
confinement effects to take place. At the same time, our
model is applicable to a very narrow quantum wire, where
carrier transport is confined, as long as lateral dimensions of
the wire are much larger than the lattice constant of the ma-
terial �a�0.543 nm for silicon at room temperature�. These
quasione-dimensional�1D� structures have recently been
proposed for applications in quantum wire transistors,5 quan-
tum wire lasers,6 and thermoelectric quantum wire arrays.7 It
can also be viewed as an ultimate narrow channel of a scaled
down conventional metal–oxide–semiconductor field-effect
transistor. The development of sophisticated patterning and
self-assembly techniques now allows fabrication of high
quality nanowires. Recently, it has been shown experimen-

tally that electrical conductivity of silicon nanowires 15–35
nm in diameter can be varied by as much as four orders of
magnitude by doping and thermal treatment.8 Nanowires
with widths down to 10 nm and small size fluctuations have
been fabricated by regular electron beam lithography and
wet etching.9

To date, there have been three distinctively different ap-
proaches proposed for calculating the lattice thermal conduc-
tivity in nanowires �quantum wires�. The first approach is
based on the effectively bulk formulae for the lattice thermal
conductivity but includes modification of acoustic phonon
dispersion and group velocity in a nanowire due to phonon
confinement effects.10,11 The latter allowed the authors to
introduce size effects beyond regular phonon-boundary scat-
tering. However, this approach does not consider the modi-
fication of nonequilibrium phonon distribution due to bound-
ary scattering. We call this approach A1 in the rest of the
article. The second approach, on the contrary, corrects the
formula for thermal conductivity by solving the linearized
Boltzmann equation with given boundary conditions but uses
bulk acoustic phonon dispersion and phonon MFP.12 The
latter neglects effects of acoustic phonon confinement, which
become significant as the structure size approaches the pho-
non MFP. This approach is referred to as A2. The third ap-
proach deals with a specific case of very narrow quantum
wires and solves the problem using the molecular dynamics
method.13. This method allows accurate calculation of pho-
non dispersion and thermal conductivity of structures with a
few atomic layers but it does not allow us to include a vari-
ety of quantum effects, requires knowledge of interatomic
potential, and is limited by the computation time.

In this article we propose a model that combines the first
two approaches�denoted by A1�A2� and presents a more
consistent way of calculating the lattice thermal conductivity
in quasi-1D nanostructures. The presented model does not
use the assumption of the constant phonon relaxation time
but calculates it from the first principles. We generalize our
model to include phonon relaxation on free electrons, which
is important for scaled down device channels. The effects ofa�Electronic mail: jzou@ee.ucr.edu
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interface quality characterized by the ratio between specular
and diffuse phonon-boundary scattering is also analyzed.
The rest of the article is organized as follows. In the next
section, we present the theory. Results of numerical simula-
tions and discussion are given in Sec. III. Our conclusions
are presented in Sec. IV.

II. THEORY

A. Phonon Boltzmann equation

A phonon of energy��s(q) and velocityVs(q) in the
direction of q contributes��s(q)Vs(q) to the heat current.
The net phonon heat current with a small temperature gradi-
ent �T is given by

JQ���
q,s

Ñq,s��s�q�Vs�q�, �1�

where subscripts refers to a particular phonon polarization
type,q is the phonon wavevector,� is the Planck constant,�
is the phonon frequency,Vs(q) is the phonon group velocity,
andÑq,s	Nq,s

0 �Nq,s is the deviation of the phonon distribu-
tion, Nq,s , from its equilibrium value,Nq,s

0 . The equilibrium
phonon distribution,Nq,s

0 , is given by the Bose–Einstein dis-
tribution

Nq,s
0 �

1

exp���s�q�/kBT ��1
. �2�

By definition

JQ��
 l�T. �3�

Thus, the problem of determining the lattice thermal conduc-
tivity is essentially that of obtainingÑq,s . In order to do this
we need to solve the Boltzmann equation forÑq,s . In steady
state, the phonon Boltzmann equation can be written as

� �Nq,s

�t �
drift

�� �Nq,s

�t �
scatt

�0. �4�

In Eq. �4�, (�Nq,s /�t)drift represents the change of the pho-
non distribution in the presence of a temperature gradient,
and it is given by

� �Nq,s

�t �
drift

��Vs�q�•�Nq,s���Vs�q�•�T �
�Nq,s

�T
. �5�

The value ofNq,s may also change due to scattering by other
phonons, impurities, charge carriers, interfaces, boundaries,
etc. The change inNq,s due to these processes is denoted in
Eq. �4� by (�Nq,s /�t)scatt. In the relaxation-time approxima-
tion this term can be written as

� �Nq,s

�t �
scatt

�
Nq,s

0 �Nq,s

�Cs�q�
, �6�

where�Cs(q) is the combined phonon relaxation time. Sub-
stituting Eqs.�5� and �6� in �4�, we can rewrite the phonon
Boltzmann equation as

�Vx

�Nq,s

�x
�Vy

�Nq,s

�y
�Vz

�Nq,s

�z
�

Ñq,s

�Cs�q�
�0, �7�

whereVx , Vy , andVz are the three components of phonon
group velocity along thex, y, andz axis, respectively.

In our theoretical analysis, we consider a generic cylin-
drical quantum wire of diameterD with an axis along thez
direction, and assume a temperature gradient along this axis.
Eq. �7� then becomes

Vx

�Ñq,s

�x
�Vy

�Ñq,s

�y
�

Ñq,s

�Cs�q�
�Vz

�T

�z

�Nq,s

�T
. �8�

Assuming that the phonon distribution does not deviate
strongly from its equilibrium value due to the temperature
gradient, we can replace (�Nq,s /�T) by (�Nq,s

0 /�T) in the
right-hand side of the Eq.�8�. This is a standard step used for
solving such an equation. Correspondingly, the linearized
phonon Boltzmann equation takes the form

Vx

�Ñq,s

�x
�Vy

�Ñq,s

�y
�

Ñq,s

�Cs�q�
�Vz

�T

�z

�Nq,s
0

�T
. �9�

In the subsection B, we introduce the expression for the lat-
tice thermal conductivity in a nanowire in the spirit of the
approach A2. It is based on the solution of Eq.�9� with
appropriate boundary conditions.

B. Calculation of the lattice thermal conductivity

For simplicity, we omit the subscriptsq ands in the rest
of the article. In the bulk, the solution for Eq.�9� can be
written as

Ñ�
�N0

�T
�T•V�C . �10�

In the coordinate system that we have defined, we can further
write Ñ as

Ñ�
�N0

�T

�T

�z
Vz�C . �11�

Substituting Eqs.�2� and �11� in Eq. �1� and comparing the
result with Eq.�3�, we obtain the regular bulk formula for the
lattice thermal conductivity

kl�� kB

� � 3 kB

2
2V
T3�

0

�D /T �Cx4ex

�ex�1�2 dx. �12�

This equation is Klemens–Callaway’s expression for the lat-
tice thermal conductivity in bulk, wherekB is the Boltzmann
constant,� is the Planck constant,V is the phonon group
velocity,T is temperature,�D is the Debye temperature,�C is
the combined phonon relaxation time, andx���/kBT. This
equation has been used in the approach A1 with an appro-
priate modification of the phonon group velocity,V, and
combined relaxation time,�C , in a quantum well10 and a
quantum wire.11

We now introduce the parameterp, which characterizes
the interface roughness and its effect on the phonon-
boundary scattering.1 The value ofp represents the probabil-
ity that the phonon is undergoing a specular scattering event
at the interface. The value of 1�p represents the probability
that the phonon is undergoing a diffuse scattering event. One
can also viewp as the fraction of all phonons specularly
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scattered from the boundary. In the case of purely specular
interface scattering,p�1, the boundary condition on the
Boltzmann equation is12

Ñ�r�D/2;Vr��Ñ�r�D/2;�Vr�, �13�

wherer��x2�y2, andVr��Vx
2�Vy

2. In the case of purely
diffuse scattering,p�0, the corresponding boundary condi-
tion is

Ñ�r�D/2;��Vr���0. �14�

In the case of purely specular scattering, which conserves
crystal momentum,Ñ does not change from its bulk value. In
the case of diffuse or partially diffuse scattering, which is a
resistive process,Ñ deviates from its bulk value. The diffu-
sive boundary scattering means that phonons can scatter
from the interface at any direction irrespective of the angle of
the incident phonon. In practice, the value of thep parameter
is defined by the interface surface roughness. Following the
derivation of Ref. 12, we solve Eq.�9� for Ñ subject to the
boundary conditions�13� and�14�. The obtained lattice ther-
mal conductivity of a nanowire,
 l

wire , can be expressed via
the bulk thermal conductivity,
 l , and its deviation due to
the phonon redistribution by the boundaries,�
 l

wire , as


 l
wire�T,p ��
 l�T,p ���
1

wire�T,p �. �15�

The deviation in the thermal conductivity value,�
 l
wire , is

given as

�
 l
wire�24



� kB

�
� 3 kB

2
2V
T3�

0

�D /T �Cx4ex

�ex�1�2 G���x �,p �dx,

�16�

where� is the ratio between the wire diameterD and the
phonon mean free path�, i.e.,

��x ��
D

��x �
, with ��x ��V�x ��C�x �. �17�

FunctionG is given by

G���x �,p ���1�p �2�
j�1

�

jp j�1�
0

1

�1�y2�1/2S4� j�y �dy ,

�18�

where

Sn�u ���
0


/2

e�u/sin � cos2 � sinn�3 �d�. �19�

Substituting Eqs.�16�–�19� in Eq. �15� and using Eq.�12�,
we can further simplify the expression for
 l

wire as


 l
wire�T,p �� � kB

�
� 3 kB

2
2V
T3�

0

�D /T �Cx4ex

�ex�1�2

� �1� 24



G���x �,p � �dx. �20�

Analyzing Eqs.�16�–�20�, we notice that whenp→1, G
→0, and the deviation from the bulk formula disappears, i.e.,
�
 l

wire�0 for all D in the case of purely specular scattering.
However, the latter does not mean that the value of the ther-
mal conductivity does not differ from its bulk value. Since
the phonon dispersion and group velocity are different in a

nanowire, the phonon heat conduction is also changed. One
should point out here that in the approach A2 the difference
between a nanowire and bulk completely disappears atp
�1.12 The phonon group velocity enters the expression of
Eq. �20� for 
 l

wire(T,p) directly as well as via the expression
for phonon scattering rates, which will be described below.
Whenp→0, only the first term in the summation of Eq.�18�
remains. WhenD→�, the exponential term in Eq.�19� goes
to zero leaving�
 l

wire�0 for all 0�p�1.

C. Phonon relaxation rates

In our model, we consider acoustic phonon relaxation in
resistive processes, such as three-phonon Umklapp scatter-
ing, mass-difference scattering, boundary scattering, and
phonon-electron scattering. The combined phonon relaxation
time can be obtained by the summation of the inverse relax-
ation times for these scattering processes and in our case it is
given as

1

�C
�

1

�U
�

1

�M
�

1

�B
�

1

�ph-e
. �21�

The relaxation time for Umklapp scattering at high tempera-
ture �room and above�, which is of interest here, was given
by Klemens as14

1

�U
�2�2

kBT

�V0

�2

�D
, �22�

where� is the Gruneisen anharmonicity parameter,� is the
shear modulus,V0 is the volume per atom, and�D is the
Debye frequency. The shear modulus in Eq.�22� is treated as
a velocity dependent effective value calculated for a given
geometry. A more accurate expression for Umklapp scatter-
ing has been given in Ref. 10. Mass-difference scattering is
the scattering of phonons due to differences in mass. The
relaxation rate for the mass-difference scattering is calcu-
lated using the following expression:

1

�M
�

V0��4

4
V3 , �23�

where� is the measure of the strength of the mass-difference
scattering defined as

���
i

f i� 1�
M i

M̄ � 2

. �24�

Here f i is the fractional concentration of the impurity atoms
of massM i andM̄�� i f iM i is the average atomic mass. One
should notice that the phonon group velocityV is a function
of the size of the low-dimensional structure and depends on
the particular type of boundaries.10

For the consistency of the model, we modify the expres-
sion for the boundary scattering relaxation via introduction
of parameterp to the semiempirical formula

1

�B
�

V

D
�1�p �. �25�

One can see that whenp�1, e.g., in the case of purely
specular scattering, boundary scattering does not contribute
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to the thermal resistivity. In the case of purely diffuse scat-
tering, p�0, Eq. �25� reduces to the well-known Casimir
limit 15

1

�B
�

V

D
. �26�

At low doping levels, the relaxation time for acoustic
phonons scattered by electrons can be expressed as16

1

�ph-e
�

ne�1
2�

�V2kBT
�
m* V2

2kBT
exp� �

m* V2

2kBT � , �27�

wherene is the concentration of conduction electrons,�1 is
the deformation potential,� is the mass density, andm* is
the electron effective mass. Here we assume that phonon
confinement does not strongly affect phonon-electron scat-
tering rates.17

D. Phonon dispersions and phonon group velocities

We consider a generic cylindrical quantum wire along
the z axis and assume that the main contribution to heat
transfer along the wire comes from the longitudinal acoustic
phonon modes. Following the approach of Refs. 18–20, the
dispersion relations for phonons in a free-standing quantum
wire with diameterD are given by

�q2�qt
2�2

�qdD/2�J0�qdD/2�

J1�qdD/2�
�2qd

2�q2�qt
2�

�4q2qd
2 �qtD/2�J0�qtD/2�

J1�qtD/2�
�0, �28�

whereq is the z component of the phonon wave vector,J0

andJ1 are the ordinary Bessel functions, andqd andqt are
two parameters related by

qd,t
2 �

�2

vd,t
2 �q2. �29�

Herevd��(��2�)/� andv t���/� are the velocities of the
longitudinal and transverse acoustic waves in bulk semicon-
ductors, where� and� are the Lame constants, and� is the
density. Phonon dispersions can be obtained by numerically
solving Eqs.�28� and �29�. At eachq, there are many solu-
tions for qd and qt . Using indexn to indicate different so-
lutions, we can write the phonon dispersion relations as

�n�vd,t�q2�qd,tn
2 , �30�

where �n is the phonon frequency for thenth branch. By
numerical differentiation, we obtain phonon group velocity
for each branch

Vn�
d�n

dq
. �31�

In order to calculate the phonon thermal conductivity, we
need to find the functional dependence of the phonon group
velocity on phonon energy. Moreover, since different
branches have different group velocity-energy dependencies,
we have to calculate the phonon group velocity averaged
over all contributing branches. The velocity average is
weighted by the phonon population factor

V̄������
n

Vn����
Nn

�mNm
��

n
Vn����

en��/kBT

�mem��/kBT .

�32�

Equation�32� gives an approximate solution since the energy
spacing between different branches is nonequidistant. The
obtainedV̄(��) is then used to calculate the lattice thermal
conductivity
 l

wire .

III. RESULTS OF SIMULATION AND DISCUSSION

First, we find the dispersion relations of confined acous-
tic phonon modes in a free-standing cylindrical quantum
wire with a particular diameter by numerically solving Eqs.
�28� and�29�. Figure 1 shows the dispersion relations of the
five lowest confined acoustic phonon branches in a silicon
cylindrical nanowire with a diameter of 20 nm. The material
parameters used in the simulation arevd�8.47�105 cm/s
andv t�5.34�105 cm/s. In Fig. 1, one can see that only the
first branch has a linear dispersion relation for very small
values ofq, and��0 whenq�0. For the second branch and
above, there exists a cut-off frequency, i.e.,��0 when q
�0. The slope of the phonon branches, and thus the group
velocities are lower than those in the bulk.

We find the exact values of the group velocity for each
phonon branch by numerical differentiation. The group ve-
locity for the first branch almost coincides with the bulk
velocity for very small values of the phonon energy. It then
drops dramatically with increasing energy and rises up again
much more slowly and finally asymptotically reaches a con-
stant value. Moreover, there are very sharp jumps and drops
of the velocity for the second and above branches as can be
expected from the phonon dispersion shown in Fig. 1. Aver-
aging over all contributing phonon branches using the
method described in part D of Sec. II, we find the average
phonon group velocity as a function of the phonon energy.
The population averaged group velocity is shown in Fig. 2.
The overall value of the average phonon group velocity is

FIG. 1. Acoustic phonon dispersion relation for five lowest confined
branches in a free-standing silicon cylindrical nanowire with a diameter of
20 nm. One can see that slope of the phonon branches, and thus the group
velocities, are lower than those in the bulk.
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5.39�105 cm/s, about half of the phonon group velocity in
the bulk. In silicon, the longitudinal sound velocity in the
bulk is 8.47�105 cm/s. The average group velocity coin-
cides with the first branch for small values of the phonon
energy�up to 1 meV only�. For higher values of the phonon
energy, it oscillates about a constant value, which asymptoti-
cally reaches 4.5�105 cm/s. One should remember that these
values are obtained for specific geometry, size, and boundary
conditions, and will be different in other structures.

Once the functional dependence of phonon group veloc-
ity on energy in a nanowire is found, we calculate phonon
relaxation rates using Eqs.�22�–�27�. Figure 3 shows the

scattering rates for the three-phonon Umklapp, mass-
difference, boundary, and phonon-electron scattering at 300
K both in the bulk and in the wire. The following material
parameters have been used in the simulation:m* �0.26m0 ,
where m0 is the free electron mass,��2330 kg/m3, �1

�9.5 eV, and��8.357�10�4. The shear modulus is esti-
mated from the formula��v t

2� �see Eq.�29��. In the bulk,
Umklapp scattering dominates over mass-difference and
phonon-electron scattering. The same is true for the quantum
wells examined in Ref. 10. In our simulation, we considered
semiconductors with a relatively low carrier concentration of
1018cm�3. The scattering rate for phonon-electron scattering
at room temperature is small compared to that for Umklapp
and mass-difference scattering. Thus, in lightly doped semi-
conductors, the phonon-electron scattering does not have a
strong influence on the lattice thermal conductivity. How-
ever, for higher carrier concentrations, phonon-electron scat-
tering becomes important, reaching the level of other relax-
ation mechanisms.

In a nanowire, boundary scattering is significant for the
entire frequency range important for silicon. The latter is
different from the quantum wells of comparable dimensions
where mass-difference dominates over most of the large por-
tion of the frequency range.10 Mass-difference scattering in
nanowires strongly increases at phonon frequency of about
5�1013rad/s due to the inverse-cubic dependence of the re-
laxation rate on the phonon group velocity, which drops at
this point to about 50% of its bulk value. Using obtained
phonon group velocity and relaxation times, we calculate the
lattice thermal conductivity in the wire, and compare the
result with the bulk value.

After the group velocity is found, we calculate
 l for a
temperature range of 300–800 K from Eq.�12�, which takes
into account confined phonon dispersion in the wire. This
gives us the lattice thermal conductivity
 l in the framework
of approach A1, which includes the decrease of the phonon
group velocity in low-dimensional structures but does not
account for the modification of nonequilibrium phonon dis-
tribution due to partially diffuse and partially specular inter-
face scattering. Figure 4 shows the lattice thermal conductiv-
ity calculated using approach A1 in a cylindrical nanowire
and bulk silicon. One can see that according to this model
the lattice thermal conductivity in the wire is reduced to
about 26% of its bulk value at 300 K. It is important to note
that this result is obtained for idealized boundary conditions
�free surface� with complete phonon confinement. Most of
the practical situations fall into the category of mixed bound-
ary conditions with partial phonon wave penetration through
the boundaries. Quantitatively, the difference in the rigidity
of materials that make up the boundary for acoustic phonons
can be characterized by the acoustic impedance mismatch�
��wvw /�bvb , where�w(�b) is the density of the wire�bar-
rier� material andvw(vb) is the sound velocity in the wire
�barrier� material. Even similar materials may have rather
large acoustic mismatch�. For example, the mismatch be-
tween Si and Ge calculated for longitudinal and transverse
sound velocities is 0.75 and 0.71, respectively.3 Thus, in a
real nanowire embedded within material of different crystal-
line properties the actual drop of
 l due to acoustic phonon

FIG. 2. Population averaged group velocity as a function of phonon energy.
The overall value of the average phonon group velocity is 5.39�105 cm/s,
which is about half of the phonon group velocity in the bulk.

FIG. 3. Phonon scattering rates in a silicon nanowire of diameterD
�20 nm due to different scattering mechanisms as functions of the phonon
frequency. The results are shown for the three-phonon Umklapp, mass-
difference, phonon-electron, and boundary scattering atT�300 K.
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confinement can be smaller owing to partial confinement of
acoustic phonons.

To develop a self-consistent model we combine ap-
proaches A1 and A2, and introduce a correction�
 l

wire to 
 l

in order to account for the deviation of nonequilibrium pho-
non distribution from its bulk form due to partially specular
and diffuse interface scattering. We calculate�
 l

wire taking
into account confined phonon dispersion and the correspond-
ing phonon group velocity. Thus, we obtain a self-consistent
expression for the lattice thermal conductivity
 l

wire , which
combines important features of both approaches A1 and A2.
The results of the simulation are shown in Figs. 5, 6 and 7.
Details of the derivation procedure and computer simulation
are given in Ref. 21.

Figure 5 shows the lattice thermal conductivity as a
function of temperature calculated on the basis of our model
�denoted by A1�A2� and approach A1. For this plot we
assumed purely diffuse phonon boundary scattering�Casimir
limit �. The flattening of the conductivity curve near room
temperature is due to the addition of phonon-electron scat-
tering. The electron density concentration used in the simu-
lation is 1018cm�3, which is far beyond the intrinsic carrier
concentration in silicon although it is still lower than the
degenerate limit. One can see that inclusion of phonon redis-
tribution effects together with phonon confinement leads to
further decrease of the lattice thermal conductivity.

Figure 6 shows the lattice thermal conductivity at room
temperature as a function of specular phonon-boundary scat-
tering fractionp. In the figure, we show the results for the
bulk, and those for the wire obtained using our self-
consistent approach (A1�A2) and approach A1. One can
see that for the purely diffuse boundary scattering, e.g.,p
�0, the A1 model predicts that the lattice thermal conduc-
tivity drops in the wire to about 26% of the bulk value; while

our model (A1�A2) predicts further reduction to 9% of the
bulk value. All the values are given for room temperature. In
the purely specular boundary scattering case, e.g.,p�1,
�
 l

wire correction vanishes and our model coincides with A1.
It is important to note that unlike model A2, in our approach
the bulk value is not recovered for the case of purely specu-
lar scattering. This is a significant difference, important for
heat transport simulation in deep submicron devices. The
origin of this difference lies in the fact that our model takes
into account modification of acoustic phonon dispersion in a
quantum wire, which is present even if the wire has prefect
boundaries and phonon boundary scattering is completely
specular. The prediction of our model for thep�1 case

FIG. 4. Lattice thermal conductivity calculated using approach A1 in a
cylindrical nanowire and bulk silicon. The results for the nanowire are cal-
culated for the case of purely diffuse boundary scattering (p�0). One can
see that according to this model the lattice thermal conductivity in the wire
is reduced to about 26% of its bulk value at 300 K. It is important to note
that this value is obtained for the idealized boundary conditions�free sur-
face� with complete phonon confinement.

FIG. 5. Lattice thermal conductivity as a function of temperature for a
silicon nanowire of diameterD�20 nm calculated on the basis of our model
(A1�A2) and approach A1. The results are shown for the case of purely
diffuse scattering (p�0).

FIG. 6. Lattice thermal conductivity at room temperature as a function of
specular phonon-boundary scattering fractionp. The results are shown for
bulk and the wire of diameter 20 nm calculated based on our approach
(A1�A2) and approach A1.
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�dominant specular boundary scattering� that the thermal
conductivity is still below its bulk value is in agreement with
experimental data reported to date.1,3,22

Figure 7 shows the lattice thermal conductivity as a
function of temperature for different values of the specular
phonon-boundary scattering fractionp. The results are
shown for our model (A1�A2) and approach A1. One can
see that for purely specular boundary scattering, e.g.,p�1,
our approach (A1�A2) and approach A1 converge due to
the fact that the correction�
 l

wire disappears in this case.
However, for partially diffusive scattering our model
(A1�A2) predicts a lower value of the lattice thermal con-
ductivity than that obtained from approach A1. In particular,
for purely diffusive boundary scattering, e.g.,p�0, our
model (A1�A2) predicts a drop of the lattice thermal con-
ductivity to about 9% of its bulk value while approach A1
predicts a reduction to about 26% of the bulk value. These
values are obtained for the free-standing quantum wire.

IV. CONCLUSION

We have proposed a self-consistent model for calculat-
ing the lattice thermal conductivity in a semiconductor
nanowire with lateral dimensions comparable to the phonon
mean free path. The model takes into account both modifi-
cations of phonon dispersions due to spatial confinement and

change in nonequilibrium phonon distribution due to bound-
ary scattering. All important phonon relaxation mechanisms
such as three-phonon Umklapp scattering, mass-difference
scattering, boundary scattering, and phonon-electron scatter-
ing are included into consideration. Phonon confinement and
boundary scattering lead to a significant decrease of the lat-
tice thermal conductivity. We show that inclusion of phonon
confinement effects leads to deviation of the thermal conduc-
tivity from its bulk value even in the case of purely specular
boundary scattering. This is an important observation that
has to be taken into account in the simulation of heat trans-
port in deep submicron and nanoscale devices.
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